FestivalNauki.ru
En Ru
cентябрь-ноябрь
176 городов
September – October
176 cities
12-14 октября 2018
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры

Хромосомы «Доширак»

Ученые из МГУ оценили выгоды укладки ДНК по принципу спагетти.

Группа исследователей из Московского государственного университета имени М.В.Ломоносова попробовала разобраться с одним из наименее ясных на сегодня вопросов молекулярной биологии — с вопросом о том, как в ядре клетки упаковываются нити ДНК. Ученые пришли к выводу, что укладка в особое состояние под названием «фрактальная глобула» за счет ускоренной тепловой диффузии позволяет всей этой генетической машинерии клетки работать с максимальным быстродействием. Результаты своего исследования они опубликовали в майском номере престижного физического журнала Physical Review Letters, импакт-фактор которого равняется 7.7 (M. V. Tamm, L. I. Nazarov, A. A. Gavrilov, and A. V. Chertovich Phys. Rev. Lett. 114, 178102).

Фрактальная глобула — понятие математическое. Если вы уроните на пол длинную леску от спиннинга, она тут свернется в такой невообразимо подлый клубок, что вам придется либо распутывать его часами, либо бежать в магазин за новой катушкой. Это — обычная, так называемая равновесная глобула. Фрактальная глобула — структура в этом смысле намного более вежливая. Применительно к леске это комок, в котором леска ни разу не завязалась в узел, она просто свернулась множество раз, так, чтобы ни одна петля вокруг другой не запуталась. Такая структура представляет собой множество свободных петель разного размера — потяни ее за два конца, и она легко распутается.

Из-за такой укладки, похожей на укладку нынешних макарон быстрого приготовления «доширак», наши физики Александр Гросберг, Сергей Нечаев и Евгений Шахнович, впервые предсказавшие ее еще в 1988 году, назвали такую глобулу «складчатой». В последние годы ее чаще называют фрактальной — и звучит научнее, да и полней отражает свойства такой глобулы, поскольку, как и во всех фракталах, ее структура (в данном случае, форма мелких и крупных петель) повторяется на малых и больших масштабах.

Долгое время это предсказание оставалось невостребованным. Но результаты исследований последних лет указывают, что хромосомы (нити ДНК) складываются в ядре именно в такую конфигурацию — во фрактальную глобулу. Сегодня по этому поводу в научном сообществе нет консенсуса, но большинство специалистов, работающих в этой области, сильно заинтриговано, и последние 5-7 лет наблюдается целый поток исследований, посвященных геному, свернутому во фрактальную глобулу.

Интуитивно это было понятно. Двойная спираль ДНК, укрепленная соответствующим набором белков, представляет собой длиннющую нить, называемую хроматином. И если этот хроматин представляет собой библиотеку технических руководств по синтезу того или иного белка, нужного организму, то лучше было бы текст этих руководств без нужды не трогать и, соответственно, избегать ненужных перекрещиваний одного гена с другим, складывать хроматиновую нитку так, чтобы ни в одном месте части этой нитки между собой не завязывались узлом. Поэтому, как бы эта нитка хроматина в ядре ни складывалась, она не должна повторять судьбу нечаянно упавшей на пол рыболовной лески, то есть быть не простой глобулой, а фрактальной.

Вдобавок, нитка во фрактальной глобуле, не имеющая узлов, по идее должна иметь более высокую свободу перемещений, что для ДНК немаловажно. Для того, чтобы ДНК нормально функционировала, необходимо, чтобы ее отдельные части в нужный момент встречались между собой, «включая» сигнал к считыванию и указывая всей системе место, откуда это считывание следует начинать, причем все это должно происходить достаточно быстро.

«Согласно существующим сегодня теориям, в полимерной цепи, свернутой в обычную глобулу, средний квадрат теплового смещения частицы (в данном случае звена этой цепи) растет пропорционально времени в степени 0.25», — рассказал старший научный сотрудник кафедры физики полимеров и кристаллов физического факультета МГУ Михаил Тамм, являющийся одним из авторов исследования.

По словам Михаила Тамма, ему вместе с коллегами удалось придумать до некоторой степени аналогичную теорию для звена полимерной цепи, свернутой во фрактальную глобулу.

«Мы сумели оценить тепловую динамику, свойственную этому виду укладки. Проведенное нами компьютерное моделирование хорошо подтвердило теоретический результат», — отметил Михаил Тамм.

Ученые из МГУ создали свой метод компьютерного моделирования, который позволял укладывать хроматиновую цепочку во фрактальную глобулу и отслеживать происходящие там тепловые процессы. Им удалось сделать то, чего не получалось у их предшественников — смоделировать ситуацию с длинной цепочкой, состоящей из четверти миллиона звеньев.

По словам Михаила Тамма, моделирование длинных цепочек, а именно они позволяют получить сколько-нибудь значимые результаты, затрудняется тем, что они очень долго приходят в равновесное состояние, при котором уже можно исследовать происходящую там тепловую диффузию.

Удачно разрешив эту проблему за счет грамотно выстроенной программы и большого компьютерного времени на суперкомпьютере МГУ «Ломоносов», исследователи смогли оценить динамику теплового движения во фрактальной глобуле. Оказалось, что частицы — то есть звенья хроматиновой цепочки — движутся быстрее, чем в обычной, не фрактальной, глобуле. Здесь средний квадрат теплового смещения звена хроматиновой цепочки рос пропорционально времени не в степени 0.25, как в обычной глобуле, а в степени 0.4, то есть движение звеньев там оказывалось значительно более быстрым. Что, по-видимому, в числе прочего и определило для хроматиновой нити выбор фрактальной глобулы в качестве способа ее укладки в ядре.

Исследователи надеются, что их работа позволит более полно понять, как именно функционирует вся машинерия, связанная с хранением и считыванием информации в ДНК.

«С точки зрения динамики нам бы хотелось разобраться с тем, какие там встроенные характерные времена, какие процессы могут происходить просто за счет теплового движения, а что неизбежно требует привлечения активных элементов, ускоряющих работу ДНК», — резюмировал Михаил Тамм.

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Мы хотим прокормить растущее население планеты

Социальные факторы могут влиять на результаты статистического анализа научных данных

Юрий Словохотов, доктор химических наук, профессор химического факультета МГУ имени М.В.Ломоносова опубликовал статью, в которой сделал вывод о том, что социальные факт

Букет мимозы и другие цветы

Кинофильм с таким названием был популярен в советские времена. В эти времена и вернемся, заодно упомянув самого известного сыщика всех времен и народов.

Ученые создали уникальные нанокапсулы для адресной доставки лекарств

Международная группа исследователей при участии физиков из МГУ имени М.В.Ломоносова разработала совершенно новый тип носителя лекарств для их адресной доставки к бол

Турбийон: в вихре времени

Более двухсот лет минуло с тех пор, как Авраам Луи Бреге (его имя носит знаменитая марка Breguet, в России чаще всего известная как "Брегет") изобрел турбийон. Но до конца ХХ века лишь считанные эксперты часового дела знали, что это такое.