FestivalNauki.ru
En Ru
cентябрь-ноябрь
176 городов
September – October
176 cities
12-14 октября 2018
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
октябрь-декабрь 2017
МВДЦ «Сибирь», Кванториум,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»

Как жидкость течет под действием электрического поля

РУБРИКА: ТЕХНОЛОГИИ

Группа ученых из МГУ узнала больше о том, как жидкость течет под действием электрического поля

Группа российских исследователей под руководством профессора МГУ и заведующей лабораторией ИФХЭ им. А.Н. Фрумкина РАН Ольги Виноградовой разработала теорию, которая по-новому описывает ситуацию с транспортом жидкости, текущей вдоль поверхности под воздействием электрического поля. Полученные результаты в будущем смогут быть использованы в научных исследованиях в физике, химии и биологии, а также во множестве практических приложений, включая медицину и фармацевтику. Статья о работе была опубликована в последнем номере одного из лучших мировых журналов по физике Physical Review Letters (импакт-фактор — 7,8).

Эксперимент профессора Московского университета Фердинанда Рейсса 1807 года – процесс электроосмоса. В изогнутую стеклянную трубку наливалась вода, а изгиб трубки заполнялся порошкообразным нерастворимым веществом (тертым камнем или песком), так что между обоими коленами трубки получалась пористая перегородка. Когда же к воде в коленах подавалось напряжение, она начинала через эту перегородку просачиватьсяТечение жидкости под действием электрического поля через капилляр, пористую преграду или, как в данном случае, в тонком канале, носит название «электроосмос». Этот эффект был открыт еще в 1807 году профессором Московского университета уроженцем Германии Фердинандом Рейссом в ходе довольно простого эксперимента . В изогнутую стеклянную трубку наливалась вода, а изгиб трубки заполнялся порошкообразным нерастворимым веществом (тертым камнем или песком), так что между обоими коленами трубки получалась пористая перегородка. Когда же к воде в коленах подавалось напряжение, она начинала через эту перегородку просачиваться (рисунок справа).

Связанное с электроосмосом явление движения твердых частиц в жидкости под влиянием электрического поля было названо электрофорезом.

Простота эффекта скрывала за собой довольно сложную физику, в которой ученым удалось разобраться лишь век спустя, когда польский физик Мариан Смолуховский в 1909 году смог теоретически описать процесс электроосмоса. В течение следующего века никто его теорию сомнению не подвергал, и только сейчас выясняется, что это лишь частный случай более общей теории, применимый только тогда, когда жидкость течет вдоль гидрофильной, то есть хорошо смачиваемоей поверхности, где следует учитывать (что Смолуховский и сделал) эффект прилипания жидкости. Теперь выясняется, что в случае с гидрофобной, плохо смачиваемой поверхности, нужно учитывать совершенно другое.

Выяснилась эта маленькая подробность как нельзя вовремя, в момент расцвета новых наук — микро- и нанофлюидики — имеющих дело с течением жидкости сквозь очень тонкие каналы. Через сверхтонкие каналы очень сложно организовывать течения с помощью механического воздействия, например создавая перепад давлений, который должен быть несообразно мощным. Если насос заменить небольшой батарейкой, то в сверхтонком канале можно создать быстрое электроосмотическое течение.

Волей-неволей физикам пришлось подвергнуть сомнению догмы доброй старой гидродинамики. Авторы статьи, которыми, помимо Ольги Виноградовой, являются еще молодые ученые с физического факультета МГУ Салим Мадуар и Алексей Беляев, показали теоретически и подтвердили в компьютерном эксперименте, что при количественном описании течений в электрических полях вдоль гидрофобной поверхности следует учитывать не граничное условие прилипания жидкости, использованное Смолуховским, а наоборот, электро-гидродинамическое условие скольжения. Такой поворот сразу изменил картину происходящего.

Около заряженной поверхности в растворе образуется облако ионов противоположного знака, которое и является причиной возникновения электро-осмотического течения. Здесь возможны два варианта — когда поверхностные заряды неподвижны, и когда они могут перемещаться вдоль поверхности под воздействием приложенного электрического поля. В случае с неподвижными зарядами все относительно просто – благодаря гидрофобному скольжению скорость электро-осмотического течения увеличивается. Когда же поверхностный заряд способен реагировать на приложенное электрическое поле, возникает, утверждают ученые, масса вариантов, порой совершенно неожиданных. Например, в статье показано, что можно индуцировать электро-осмотическое течение даже вблизи незаряженной поверхности или, наоборот, полностью подавить такое течение в каналах с идеально скользкими заряженными стенками.

Главным «действующим лицом» теории Смолуховского был так называемый дзета-потенциал, физико-химический параметр, рассчитываемый по специальной формуле и говорящий, в частности, о степени электроосмотической и электрофоретической подвижности: чем выше дзета-потенциал, тем быстрее течение жидкости или движение частицы. До недавнего времени считалось, что фактически дзета-потенциал равен потенциалу поверхности твердого тела на границе с жидкостью. В новой теории герой остался прежним, однако его интерпретация существенно усложнилась.

«В теории Смолуховского предполагается, что дзета-потенциал равен потенциалу самой поверхности и не зависит от других поверхностей, которые находятся рядом, — утверждает Виноградова. — Эти выводы являются следствием классического гидродинамического условия прилипания жидкости к твердому телу. В нашей статье показано, что в случае гидрофобных поверхностей это не так из-за того, что гидрофобная поверхность скользкая, а ассоциированные со скользкой поверхностью ионы могут реагировать на электрическое поле».

Теперь дзета-потенциал оказался связан также с параметрами, характеризующими подвижность поверхностных зарядов и гидродинамическое скольжение на поверхности, и даже получил дополнительную зависимость от возможного близкого присутствия другой поверхности.

Жизнь с новой теорией стала сложнее, но понятнее. Так, эта теория позволила сразу разрешить несколько парадоксов, многие годы остававшихся под большим знаком вопроса. Например, она позволила объяснить результаты измерений дзета-потенциала пузырьков и капель.

«Эти измерения давно и неизменно показывали, что их дзета-потенциалы такие же, как у твердого тела, — говорит Ольга Виноградова. — Это объяснялось, в частности, наличием загрязнений на поверхности пузырьков и капель. Мы показали, что загрязнения здесь ни при чем, и что дзета-потенциал в данном случае действительно совпадает с дзета-потенциалом твердого тела, но уже совсем по другим причинам».

Теория также помогла понять вызывавшие жаркие споры электроосмотические течения в пенных пленках.

Возможные практические применения новой теории, по мнению Виноградовой, весьма обширны, хотя бы по той причине, что концепция дзета-потенциала широко используется во многих областях науки и техники, таких, например, как медицина, фармацевтика, обогащение полезных ископаемых, водоочистка, очистка почв от загрязнений и многое другое. Новая интерпретация этого параметра позволит лучше понимать результаты его экспериментальных измерений, она позволит также управлять его величиной. Особенно перспективно использование новой теории в области микро- и нанофлюидики, например, для дизайна устройств «лаборатория на чипе» и нанофлюидных диодов, уже используемых как для распознавания и разделения биомолекул, так и для конверсии энергии.

«Но, разумеется, путь от новой теории к практическим применениям всегда очень долог, — утверждает Виноградова. — Полагаю, первыми, кто будет использовать наши результаты, окажутся экспериментаторы». 

 

Биография Фердинанда Рейсса из книги «Биографический словарь профессоров и преподавателей Московского университета». Москва. Университетская типография. 1855

 

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Другие статьи в этой рубрике

Новости в фейсбук

Случайные статьи

Сороки мгновенно оценивают намерения человека по его лицу

Сороки, как и другие животные, чувствуют на себе человеческий взгляд, однако при этом они не обязательно расценивают его как угрозу — птицам достаточно мимолётного взгляда на ваше лицо, чтобы понять, с какими намерениями вы к ним приближаетесь.

Тренировка иммунитета. Часть II.

Что еще поможет не болеть кроме правильного питания и спокойствия? Читайте вторую часть рекомендаций ведущих ученых мира по сохранению и приумножению иммунитета.

Насекомые прошли тест Тьюрингом

Ученые и выпускники МГУ имени М.В.Ломоносова подтвердили модель Алана Тьюринга, которая описывает такие сложные биологические рисунки, как пятна на шкуре леопарда или узоры на коже тропических рыб.

Стекло гибкое, металлическое

Участники международного проекта – учёные Московского института стали и сплавов и их японские коллеги из Университета Тохоку. Возглавляет коллектив исследователей профессор Дмитрий Лузгин.

Регион-рекордсмен

Якутия – один из самых уникальных регионов России. Начнем с того, что это самый большой регион нашей страны, занимает 18% ее территории.