FestivalNauki.ru
En Ru
cентябрь-ноябрь 2020
176 городов
September – November 2020
312 cities
09-11 октября 2020
МГУ | Экспоцентр | 90+ площадок
14–16 октября 2016
Центральная региональная площадка
28–30 октября 2016
ИРНИТУ, Сибэскпоцентр
14–15 октября 2016
Центральная региональная площадка
23 сентября - 8 октября 2017
«ДонЭкспоцентр», ДГТУ
ноябрь-декабрь 2018
МВДЦ «Сибирь»,
Вузы и научные площадки города
6-8 октября 2017
Самарский университет
27-29 октября
Кампус ДВФУ, ВГУЭС
30 сентября - 1 октября
Ледовый каток «Родные города»
21-22 сентября 2018 года
ВКК "Белэкспоцентр"
9-10 ноября 2018 года
Мурманский областной Дворец Культуры
21-22 сентября 2019 года
22-23 октября 2019 года
29-30 ноября 2019 года
7-8 сентября 2019 года
27-29 сентября 2019 года
4-5 октября 2019 года
10-12 октября 2019 года

По уровню излучения клеток в красном спектре можно определить состояние здоровья организма

77 город Москва
Когда учёные МГУ имени М.В. Ломоносова исследовали источники излучения в тканях человеческого организма, они выяснили, что продукты окисления клеток могут излучать свет в красном спектре в ответ на облучение. Зная все источники излучения и характеристики сигнала, можно более точно определять границы опухолей и степень старения клеток. Исследование поддержано Президентской программой исследовательских проектов Российского научного фонда (РНФ), результаты работы опубликованы в журнале Molecules.
Для анализа биологических тканей часто используется метод флуоресцентной диагностики. Его суть заключается в том, что на ткань подают свет с определённой длиной волны, он приводит находящиеся в молекулах-флуорофорах электроны в возбуждённое состояние. Однако это состояние неустойчиво, и электроны быстро возвращаются на исходный энергетический уровень, а энергия, полученная при этом переходе, превращается в свет (флуоресценцию). В красном спектре собственная флуоресценция тканей и клеток минимальна, но именно она может быть маркером опухолей и старения клеток. Зная, с какой силой и сколько времени они излучают свет, можно, например, определить границы опухоли. В то же время природа красной флуоресценции остаётся неизвестна.
Существует гипотеза, что источником флуоресценции могут быть продукты окисления белков, липидов, ДНК и аминокислот. Они образуются под действием свободных радикалов кислорода, которые притягивают к себе электроны молекул в клетках, в результате чего изменяются их структура и состав. Так, в процессе окисления в клетках накапливается, например, липофусцин, так называемый пигмент старения: чем больше его в клетке, тем сильнее излучение. Разница в уровне окислительных процессов позволяет определять границы раковой опухоли. Также излучение способно повлиять на результаты анализа старения клеток.
Чтобы доказать, что продукты окисления могут испускать свет в красном спектре после облучения, учёные сначала подвергали водные растворы белков и ДНК фотоокислению, после чего измеряли оптические свойства полученных образцов. Сигнал, исходящий от необлучённых образцов, был почти незаметен, в то время как окисленные молекулы флуоресцировали в широком диапазоне длин волн возбуждения, включая красный свет.
На втором этапе исследования были изучены качественные характеристики флуоресценции продуктов окисления в кератиноцитах – клетках человеческой кожи. На них подавали ультрафиолетовое излучение с длиной волны 254 нанометра. Сразу после этого изменений не наблюдалось, однако интенсивность излучения увеличилась спустя 5–15 часов в зависимости от силы возбуждающего света. Кератиноциты были взяты для исследования, так как верхний слой кожного покрова состоит из них на 90%, и под действием ультрафиолетового излучения в коже образуется большое количество свободных радикалов, усиливающих процесс окисления. Флуоресценция клеток, в которых происходит окислительный стресс, может перекрывать фоновый сигнал биологических тканей.
«Концентрация аминокислот, липидов, белков и других компонентов в клетках и тканях человеческого организма выше, чем в использованных нами растворах. Поэтому при анализе биологических тканей сигнал, исходящий от продуктов окисления, будет сильнее. Их флуоресценция может обеспечивать определённый вклад в результирующий сигнал, особенно в красной области спектров, где влияние других собственных флуорофоров мало», – отмечает руководитель проекта по гранту РНФ Евгений Ширшин, кандидат физико-математических наук, старший научный сотрудник кафедры квантовой электроники физического факультета МГУ имени М.В. Ломоносова.
Сейчас учёные анализируют причины флуоресценции в гетерогенных смесях флуорофоров, являющихся продуктами окисления. Полученные в ходе исследования данные позволяют лучше понять природу излучения в красном спектре и могут быть использованы для более точной интерпретации результатов медицинских исследований и определения источников излучения в биологических тканях.
Лабораторные исследования были проведены при поддержке Национального медицинского научно-исследовательского центра онкологии имени Н.Н. Блохина и Сколковского института науки и технологий.
Фото. Синяя, зелёная и красная флуоресценция. Источник: Евгений Ширшин
 

Добавьте свой комментарий

Plain text

  • Переносы строк и абзацы формируются автоматически
  • Разрешённые HTML-теги: <p> <br>
LiveJournal
Регистрация

Новости в фейсбук

Случайные статьи

Орнитологи МГУ о влиянии глобального потепления на численность куликов

Физики МГУ создали новую теорию механизма сборки цитоскелетных микротрубочек

 

Межзвездная комета Борисова начала разрушаться

NASA, ESA, and D. Jewitt (UCLA)

Учёные МГУ зафиксировали гибель рифов Мальдивского архипелага

Ученые установили, что антиоксиданты в перспективе могут облегчить слабость мышц лица

Ученые МГУ в составе международного коллектива определили, что при лице-лопаточной мышечной дистрофии Ландузи-Дежерина (МДЛД) обнаруживается повреждение ДНК мышечных кл